Nonstructural protein 3 of bluetongue virus assists virus release by recruiting ESCRT-I protein Tsg101.
نویسندگان
چکیده
The release of Bluetongue virus (BTV) and other members of the Orbivirus genus from infected host cells occurs predominantly by cell lysis, and in some cases, by budding from the plasma membrane. Two nonstructural proteins, NS3 and NS3A, have been implicated in this process. Here we show that both proteins bind to human Tsg101 and its ortholog from Drosophila melanogaster with similar strengths in vitro. This interaction is mediated by a conserved PSAP motif in NS3 and appears to play a role in virus release. The depletion of Tsg101 with small interfering RNA inhibits the release of BTV and African horse sickness virus, a related orbivirus, from HeLa cells up to fivefold and threefold, respectively. Like most other viral proteins which recruit Tsg101, NS3 also harbors a PPXY late-domain motif that allows NS3 to bind NEDD4-like ubiquitin ligases in vitro. However, the late-domain motifs in NS3 do not function as effectively in facilitating the release of mini Gag virus-like particles from 293T cells as the late domains from human immunodeficiency virus type 1, human T-cell leukemia virus, and Ebola virus. A mutagenesis study showed that the arginine residue in the PPRY motif is responsible for the low activity of the NS3 late-domain motifs. Our data suggest that the BTV late-domain motifs either recruit an antagonist that interferes with budding or fail to recruit an agonist which is different from NEDD4.
منابع مشابه
Nipah Virus C Protein Recruits Tsg101 to Promote the Efficient Release of Virus in an ESCRT-Dependent Pathway
The budding of Nipah virus, a deadly member of the Henipavirus genus within the Paramyxoviridae, has been thought to be independent of the host ESCRT pathway, which is critical for the budding of many enveloped viruses. This conclusion was based on the budding properties of the virus matrix protein in the absence of other virus components. Here, we find that the virus C protein, which was previ...
متن کاملInteraction with Tsg101 Is Necessary for the Efficient Transport and Release of Nucleocapsids in Marburg Virus-Infected Cells
Endosomal sorting complex required for transport (ESCRT) machinery supports the efficient budding of Marburg virus (MARV) and many other enveloped viruses. Interaction between components of the ESCRT machinery and viral proteins is predominantly mediated by short tetrapeptide motifs, known as late domains. MARV contains late domain motifs in the matrix protein VP40 and in the genome-encapsidati...
متن کاملInvolvement of vacuolar protein sorting pathway in Ebola virus release independent of TSG101 interaction.
Budding of Ebola virus (EBOV) particles from the plasma membrane of infected cells requires viral and host proteins. EBOV virus matrix protein VP40 recruits TSG101, an ESCRT-1 (host cell endosomal sorting complex required for transport-1) complex protein in the vacuolar protein sorting (vps) pathway, to the plasma membrane during budding. Involvement of other vps proteins in EBOV budding has no...
متن کاملHuman ESCRT-II complex and its role in human immunodeficiency virus type 1 release.
The budding of many enveloped RNA viruses, including human immunodeficiency virus type 1 (HIV-1), requires some of the same cellular machinery as vesicle formation at the multivesicular body (MVB). In Saccharomyces cerevisiae, the ESCRT-II complex performs a central role in MVB protein sorting and vesicle formation, as it is recruited by the upstream ESCRT-I complex and nucleates assembly of th...
متن کاملHIV-1 Vpr Abrogates the Effect of TSG101 Overexpression to Support Virus Release
HIV-1 budding requires interaction between Gag and cellular TSG101 to initiate viral particle assembly and release via the endosomal sorting complexes required for transport (ESCRT) pathway. However, some reports show that overexpression of TSG101 inhibits virus release by disruption of Gag targeting process. Since a HIV-1 accessory protein, Vpr binds to Gag p6 domain at the position close to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 80 1 شماره
صفحات -
تاریخ انتشار 2006